CLASSIC
Canadian Land Surface Scheme including Biogeochemical Cycles
Bibliography
[1]

K Abdella and N A McFarlane. Parameterization of the surface-layer exchange coefficients for atmospheric models. Bound.-Layer Meteorol., 80(3):223–248, August 1996.

[2]

Edward Aguado. Radiation balances of melting snow covers at an open site in the central sierra nevada, california. Water Resour. Res., 21(11):1649–1654, 1 November 1985.

[3]

Paul B Alton. Retrieval of seasonal rubisco-limited photosynthetic capacity at global FLUXNET sites from hyperspectral satellite remote sensing: Impact on carbon modelling. Agric. For. Meteorol., 232:74–88, 15 January 2017.

[4]

Vivek K. Arora and George J. Boer. A representation of variable root distribution in dynamic vegetation models. Earth Interact., 7(6):1–19, 2003.

[5]

Vivek K Arora and George J Boer. Fire as an interactive component of dynamic vegetation models. J. Geophys. Res., 110(G2):G02008, 1 December 2005.

[6]

Vivek K. Arora and George J. Boer. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Chang. Biol., 11(1):39–59, 2005.

[7]

V Arora and G Boer. Achieving coexistence: Comment on ``modelling rainforest diversity: The role of competition'' by bampfylde et al.(2005). Ecol. Modell., 2006.

[8]

Vivek K. Arora and George J. Boer. Simulating competition and coexistence between plant functional types in a dynamic vegetation model. Earth Interact., 10(10):1–30, 2006.

[9]

V K Arora and G J Boer. Uncertainties in the 20th century carbon budget associated with land use change. Glob. Chang. Biol., 16(12):3327–3348, 2010.

[10]

V. K. Arora, G. J. Boer, J. R. Christian, C. L. Curry, K. L. Denman, K. Zahariev, G. M. Flato, J. F. Scinocca, W. J. Merryfield, and W. G. Lee. The effect of terrestrial photosynthesis down regulation on the Twentieth-Century carbon budget simulated with the CCCma earth system model. J. Clim., 22(22):6066–6088, 2009.

[11]

V. K. Arora, J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38(5):L05805, 2011.

[12]

Vivek K. Arora. Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agric. For. Meteorol., 118(1-2):21–47, August 2003.

[13]

August H Auer. The rain versus snow threshold temperatures. Weatherwise, 27(2):67–67, 1 April 1974.

[14]

Timothy J Ball, Ian E Woodrow, and Joseph A Berry. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research, pages 221–224. Springer Netherlands, 1 January 1987.

[15]

Paul A Bartlett and Diana L Verseghy. Modified treatment of intercepted snow improves the simulated forest albedo in the canadian land surface scheme. Hydrol. Process., 29(14):3208–3226, 1 July 2015.

[16]

Paul A Bartlett, Murray D MacKay, and Diana L Verseghy. Modified snow algorithms in the canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmosphere-Ocean, 44(3):207–222, 1 September 2006.

[17]

William L Bauerle, Ram Oren, Danielle A Way, Song S Qian, Paul C Stoy, Peter E Thornton, Joseph D Bowden, Forrest M Hoffman, and Robert F Reynolds. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc. Natl. Acad. Sci. U. S. A., 109(22):8612–8617, 29 May 2012.

[18]

Gordon B Bonan. A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide. NCAR Technical Note NCAR/TN-417+ STR, 1996.

[19]

Ross Brown, Paul Bartlett, Murray MacKay, and Diana Verseghy. Evaluation of snow cover in CLASS for SnowMIP. Atmosphere-Ocean, 44(3):223–238, 1 September 2006.

[20]

Bhaskar J Choudhury and Sherwood B Idso. An empirical model for stomatal resistance of field-grown wheat. Agric. For. Meteorol., 36(1):65–82, 1 November 1985.

[21]

Roger B. Clapp and George M. Hornberger. Empirical equations for some soil hydraulic properties. Water Resour. Res., 14(4):601–604, 1978.

[22]

I Colin Prentice, Martin T Sykes, and Wolfgang Cramer. A simulation model for the transient effects of climate change on forest landscapes. Ecol. Modell., 65(1-2):51–70, January 1993.

[23]

G.james Collatz, J.timothy Ball, Cyril Grivet, and Joseph A Berry. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. For. Meteorol., 54(2–4):107–136, April 1991.

[24]

GJ Collatz, M Ribas-Carbo, and JA Berry. Coupled Photosynthesis-Stomatal conductance model for leaves of C 4 plants. Funct. Plant Biol., 19(5):519–538, 1 January 1992.

[25]

Nathan Collier, Forrest M Hoffman, David M Lawrence, Gretchen Keppel‐Aleks, Charles D Koven, William J Riley, Mingquan Mu, and James T Randerson. The international land model benchmarking (ILAMB) system: Design, theory, and implementation. J. Adv. Model. Earth Syst., 10(11):2731–2754, November 2018.

[26]

Neil T Comer, Peter M Lafleur, Nigel T Roulet, Matthew G Letts, Michael Skarupa, and Diana Verseghy. A test of the canadian land surface scheme (class) for a variety of wetland types. Atmosphere-Ocean, 38(1):161–179, 1 March 2000.

[27]

B J Cosby, G M Hornberger, R B Clapp, and T R Ginn. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20(6):682–690, 1 June 1984.

[28]

P M Cox, R A Betts, C B Bunton, R. L. H. Essery, P R Rowntree, and J Smith. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15(3):183–203, 1 March 1999.

[29]

PM Cox. Description of the TRIFFID dynamic global vegetation model. Technical Report 24, Hadley Centre, 2001.

[30]

Jean Côté and Jean-Marie Konrad. A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J., 42(2):443–458, 1 April 2005.

[31]

James W Deardorff. Parameterization of the planetary boundary layer for use in general circulation models. Mon. Weather Rev., 100(2):93–106, 1 February 1972.

[32]

Yves Delage, Lei Wen, and Jean‐marc Bélanger. Aggregation of parameters for the land surface model CLASS. Atmosphere-Ocean, 37(2):157–178, 1 June 1999.

[33]

Inge Dirmhirn and Frank D Eaton. Some characteristics of the albedo of snow. J. Appl. Meteorol., 14(3):375–379, 1 April 1975.

[34]

K A Emanuel. Atmospheric Convection. Oxford University Press, 1994.

[35]

G D Farquhar, S von Caemmerer, and J A Berry. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1):78–90, 1 June 1980.

[36]

R A Feddes, E Bresler, and S P Neuman. Field test of a modified numerical model for water uptake by root systems. Water Resour. Res., 10(6):1199–1206, 1 December 1974.

[37]

C H Field and H A Mooney. Photosynthesis–nitrogen relationship in wild plants. In T J Givnish, editor, On the economy of plant form and function, pages 25–55. agris.fao.org, 1986.

[38]

M J Fisher, D A Charles-Edwards, and M M Ludlow. An analysis of the effects of repeated Short-Term soil water deficits on stomatal conductance to carbon dioxide and leaf photosynthesis by the legume macroptilium atropurpureum cv. siratro. Funct. Plant Biol., 8(3):347–357, 1 June 1981.

[39]

J R Garratt. The Atmospheric Boundary Layer. Cambridge University Press, 1992.

[40]

L W Gold. Changes in a shallow snow cover subject to a temperate climate. J. Glaciol., 3(23):218–222, 1 January 1958.

[41]

W H Green and G A Ampt. Studies on soil physics: I. flow of air and water throught soils. J. Agric. Sci., 4:1–24, 1911.

[42]

Thomas C Grenfell and Gary A Maykut. The optical properties of ice and snow in the arctic basin. J. Glaciol., 18(80):445–463, 1977.

[43]

R P Guyette, R M Muzika, and D C Dey. Dynamics of an anthropogenic fire regime. Ecosystems, 5(5):472–486, 1 August 2002.

[44]

Joshua P Hacker, John Exby, David Gill, Ivo Jimenez, Carlos Maltzahn, Timothy See, Gretchen Mullendore, and Kathryn Fossell. A containerized mesoscale model and analysis toolkit to accelerate classroom learning, collaborative research, and uncertainty quantification. Bull. Am. Meteorol. Soc., 98(6):1129–1138, October 2016.

[45]

Torsten Ingestad and Ann-britt Lund. Theory and techniques for steady state mineral nutrition and growth of plants. Scand. J. For. Res., 1(1-4):439–453, 1986.

[46]

R B Jackson, J Canadell, J R Ehleringer, H A Mooney, O E Sala, and E D Schulze. A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3):389–411, 1 November 1996.

[47]

Jens Kattge, Wolfgang Knorr, Thomas Raddatz, and Christian Wirth. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Chang. Biol., 15(4):976–991, 2009.

[48]

Miko U.f. Kirschbaum. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem., 27(6):753–760, June 1995.

[49]

S. Kloster, N. M. Mahowald, J. T. Randerson, P. E. Thornton, F. M. Hoffman, S. Levis, P. J. Lawrence, J. J. Feddema, K. W. Oleson, and D. M. Lawrence. Fire dynamics during the 20th century simulated by the community land model. Biogeosciences, 7(6):1877–1902, 11 June 2010.

[50]

S. Kloster, N. M. Mahowald, J. T. Randerson, and P. J. Lawrence. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 9(1):509–525, 26 January 2012.

[51]

Charles D Koven, Bruno Ringeval, Pierre Friedlingstein, Philippe Ciais, Patricia Cadule, Dmitry Khvorostyanov, Gerhard Krinner, and Charles Tarnocai. Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, 108(36):14769–14774, 6 September 2011.

[52]

C D Koven, W J Riley, Z M Subin, J Y Tang, M S Torn, W D Collins, G B Bonan, D M Lawrence, and S C Swenson. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 10(11):7109–7131, November 2013.

[53]

Christopher J. Kucharik, Jonathan A. Foley, Christine Delire, Veronica A. Fisher, Michael T. Coe, John D. Lenters, Christine Young-Molling, Navin Ramankutty, John M. Norman, and Stith T. Gower. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14(3):795–825, 2000.

[54]

Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. Singularity: Scientific containers for mobility of compute. PLoS One, 12(5):e0177459, May 2017.

[55]

Peter J Lawrence and Thomas N Chase. Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J. Geophys. Res., 112(G1):G01023, 1 March 2007.

[56]

S Lawrence Dingman. Physical Hydrology. Prentice-Hall, 2nd edition, 2002.

[57]

D M Lawrence, C D Koven, S C Swenson, W J Riley, and A G Slater. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett., 10(9):094011, 8 September 2015.

[58]

Matthew G Letts, Nigel T Roulet, Neil T Comer, Michael R Skarupa, and Diana L Verseghy. Parametrization of peatland hydraulic properties for the canadian land surface scheme. Atmosphere-Ocean, 38(1):141–160, 2000.

[59]

R Leuning. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ., 1995.

[60]

R. Li and V. K. Arora. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances. Biogeosciences, 9(1):593–605, 31 January 2012.

[61]

F Li, X D Zeng, and S Levis. A process-based fire parameterization of intermediate complexity in a dynamic global vegetation model. Biogeosciences, 9(7):2761–2780, 30 July 2012.

[62]

J Lloyd and J A Taylor. On the temperature dependence of soil respiration. Funct. Ecol., 8(3):315–323, 1 June 1994.

[63]

Alfred J Lotka. Elements of physical biology. Williams & Wilkins company, Baltimore, 1925.

[64]

Mkb Ludeke, F W Badeck, R D Otto, C Hager, S Donges, and others. The frankfurt biosphere model: a global process-oriented model of seasonal and long-term COz exchange between terrestrial ecosystems and the atmosphere. …. Climate Research, 4:143–166, 1994.

[65]

J R Melton and V K Arora. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink. Biogeosciences, 11(4):1021–1036, 21 February 2014.

[66]

J R Melton and V K Arora. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink. Biogeosciences, 11(4):1021–1036, 21 February 2014.

[67]

J R Melton and V K Arora. Competition between plant functional types in the canadian terrestrial ecosystem model (CTEM) v. 2.0. Geoscientific Model Development, 27 January 2016.

[68]

Joe R Melton, Reinel Sospedra-Alfonso, and Kelly E McCusker. Tiling soil textures for terrestrial ecosystem modelling via clustering analysis: a case study with CLASS-CTEM (version 2.1). Geoscientific Model Development, 10(7):2761–2783, July 2017.

[69]

M. Migliavacca, A. Dosio, S. Kloster, D. S. Ward, A. Camia, R. Houborg, T. Houston Durrant, N. Khabarov, A. A. Krasovskii, J. San Miguel-Ayanz, and A. Cescatti. Modeling burned area in europe with the community land model. Journal of Geophysical Research: Biogeosciences, 118(1):265–279,

[70]

Yoshiyuki Miyazawa and Kihachiro Kikuzawa. Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaved species in a temperate deciduous forest. Tree Physiol., 26(2):249–256, February 2006.

[71]

P R Moorcroft, G C Hurtt, and S W Pacala. A method for scaling vegetation dynamics: The ecosystem demography model (ED). Ecol. Monogr., 71(4):557–586, 2001.

[72]

M Namazi, K von Salzen, and J N S Cole. Simulation of black carbon in snow and its climate impact in the canadian global climate model. Atmos. Chem. Phys., 15(18):10887–10904, 30 September 2015.

[73]

Keith W. Oleson, David M. Lawrence, Gordon Bonan, Mark G. Flanner, Erik Kluzek, Samuel Levis, Sean C. Swenson, Peter E. Thornton, Aiguo Dai, Mark Decker, Robert Dickinson, Johannes Feddema, Colette L. Heald, Forrest Hoffman, Jean-Francois Lamarque, Nathalie Mahowald, Guo-Yue Niu, Taotao Qian, James Randerson, Steve Running, Koichi Sakaguchi, Andrew Slater, Reto Stöckli, Aihui Wang, Zong-Liang Yang, Xiaodong Zeng, and Xubin Zeng. Technical description of version 4.0 of the community land model (CLM). Technical report, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, 2010.

[74]

WJ Parton, A Haxeltine, P Thornton, R Anne, and Melannie Hartman. Ecosystem sensitivity to land-surface models and leaf area index. Glob. Planet. Change, 13(1–4):89–98, June 1996.

[75]

Thijs L Pons and Rob A M Welschen. Midday depression of net photosynthesis in the tropical rainforest tree eperua grandiflora: contributions of stomatal and internal conductances, respiration and rubisco functioning. Tree Physiol., 23(14):937–947, 4 October 2003.

[76]

William H Press. Numerical Recipes in Fortran 90: The Art of Scientific Computing. Cambridge University Press, 2007.

[77]

Colin Price and David Rind. What determines the cloud-to-ground lightning fraction in thunderstorms? Geophys. Res. Lett., 20(6):463–466, 1993.

[78]

Jonathan S Price, Peter N Whittington, David E Elrick, Strack Maria, Brunet Nathalie, and Faux Erica. A method to determine unsaturated hydraulic conductivity in living and undecomposed moss. Soil Sci. Soc. Am. J., 72(2):487, 2008.

[79]

P B Reich, M B Walters, M G Tjoelker, D Vanderklein, and C Buschena. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct. Ecol., 12(3):395–405, 1998.

[80]

Michael G. Ryan. Effects of climate change on plant respiration. Ecol. Appl., 1(2):157–167, 1991.

[81]

Piers J. Sellers, Compton J. Tucker, G. James Collatz, Sietse O. Los, Christopher O. Justice, Donald A. Dazlich, and David A. Randall. A revised land surface parameterization (SiB2) for atmospheric GCMS. part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim., 9(4):706–737, 1996.

[82]

R K Shrestha, V K Arora, and J R Melton. The sensitivity of simulated competition between different plant functional types to sub-grid-scale representation of vegetation in a land surface model. J. Geophys. Res. Biogeosci., page 2015JG003234, January 2016.

[83]

Evan Siemann and William E Rogers. Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands. J. Ecol., 91(6):923–931, 2003.

[84]

S. Sitch, B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Kaplan, S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, and S. Venevsky. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol., 9(2):161–185, 2003.

[85]

F. St-Hilaire, J. Wu, N. T. Roulet, S. Frolking, P. M. Lafleur, E. R. Humphreys, and V. Arora. McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments. Biogeosciences, 7(11):3517–3530, 9 November 2010.

[86]

Minze Stuiver and Henry A Polach. Discussion reporting of 14C data, 1977.

[87]

Mark G Tjoelker, Jacek Oleksyn, and Peter B Reich. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob. Chang. Biol., 7(2):223–230, 2001.

[88]

M R Turetsky, B Bond-Lamberty, E Euskirchen, J Talbot, S Frolking, A D McGuire, and E-S Tuittila. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol., 196(1):49–67, 1 October 2012.

[89]

Diana L Verseghy and Murray D MacKay. Offline implementation and evaluation of the canadian small lake model with the canadian land surface scheme over western canada. J. Hydrometeorol., 0(0):null, March 2017.

[90]

D L Verseghy, N A McFarlane, and M Lazare. CLASS – a canadian land surface scheme for GCMs, II. vegetation model and coupled runs. Int. J. Climatol., 13(4):347–370, 1993.

[91]

Diana L. Verseghy. CLASS – a canadian land surface scheme for GCMs. i. soil model. Int. J. Climatol., 11(2):111–133, 1991.

[92]

D Verseghy. CLASS – The Canadian land surface scheme. Climate Research Division, Science and Technology Branch, Environment Canada, 2012.

[93]

Vito Volterra. Fluctuations in the abundance of a species considered mathematically. Nature, 118:558–560, October 1926.

[94]

D E Vries and D A. Thermal properties of soils. Physics of plant environment, 1963.

[95]

Audrey Wang, David T Price, and Vivek Arora. Estimating changes in global vegetation cover (1850–2100) for use in climate models. Global Biogeochem. Cycles, 20(3):GB3028, 1 September 2006.

[96]

R H Waring. Estimating forest growth and efficiency in relation to canopy leaf area. Adv. Ecol. Res., 1983.

[97]

Yuanqiao Wu, Diana L Verseghy, and Joe R Melton. Integrating peatlands into the coupled canadian land surface scheme (CLASS) v3.6 and the canadian terrestrial ecosystem model (CTEM) v2.0. Geoscientific Model Development, 9(8):2639–2663, 11 August 2016.

[98]

Liukang Xu and Dennis D Baldocchi. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol., 23(13):865–877, 9 September 2003.